Interactions of Yeast Dynein with Dynein Light Chain and Dynactin: GENERAL IMPLICATIONS FOR INTRINSICALLY DISORDERED DUPLEX SCAFFOLDS IN MULTIPROTEIN ASSEMBLIES.

نویسندگان

  • Jing Jie
  • Frank Löhr
  • Elisar Barbar
چکیده

Intrinsically disordered protein (IDP) duplexes composed of two IDP chains cross-linked by bivalent partner proteins form scaffolds for assembly of multiprotein complexes. The N-terminal domain of dynein intermediate chain (N-IC) is one such IDP that forms a bivalent scaffold with multiple dynein light chains including LC8, a hub protein that promotes duplex formation of diverse IDP partners. N-IC also binds a subunit of the dynein regulator, dynactin. Here we characterize interactions of a yeast ortholog of N-IC (N-Pac11) with yeast LC8 (Dyn2) or with the intermediate chain-binding subunit of yeast dynactin (Nip100). Residue level changes in Pac11 structure are monitored by NMR spectroscopy, and binding energetics are monitored by isothermal titration calorimetry (ITC). N-Pac11 is monomeric and primarily disordered except for a single α-helix (SAH) at the N terminus and a short nascent helix, LH, flanked by the two Dyn2 recognition motifs. Upon binding Dyn2, the only Pac11 residues making direct protein-protein interactions are in and immediately flanking the recognition motifs. Dyn2 binding also orders LH residues of Pac11. Upon binding Nip100, only Pac11 SAH residues make direct protein-protein interactions, but LH residues at a distant sequence position and L1 residues in an adjacent linker are also ordered. The long distance, ligand-dependent ordering of residues reveals new elements of dynamic structure within IDP linker regions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynein Binding of Competitive Regulators Dynactin and NudE Involves Novel Interplay between Phosphorylation Site and Disordered Spliced Linkers.

Dynactin and NudE/Nudel are prominent regulators of cytoplasmic dynein motility and cargo-binding activities. Both interact with the intrinsically disordered N-terminal domain of dynein intermediate chain (IC), which also contains phosphorylation sites that apparently regulate these interactions. Nuclear magnetic resonance and isothermal calorimetry studies demonstrate that the Ser84 phosphoryl...

متن کامل

Functional interaction between dynein light chain and intermediate chain is required for mitotic spindle positioning

Cytoplasmic dynein is a large multisubunit complex involved in retrograde transport and the positioning of various organelles. Dynein light chain (LC) subunits are conserved across species; however, the molecular contribution of LCs to dynein function remains controversial. One model suggests that LCs act as cargo-binding scaffolds. Alternatively, LCs are proposed to stabilize the intermediate ...

متن کامل

Native disorder mediates binding of dynein to NudE and dynactin.

In the present paper, I report the molecular overlap of the linkage of three essential protein complexes that co-ordinate the formation of the mitotic spindle. These proteins are dynein, a large motor complex that moves machinery inside cells, and two of its regulators: a protein complex called dynactin, a dynein activator, and a protein called NudE whose depletion in mice produces a small brai...

متن کامل

Dynactin integrity depends upon direct binding of dynamitin to Arp1

Dynactin is a multiprotein complex that works with cytoplasmic dynein and other motors to support a wide range of cell functions. It serves as an adaptor that binds both dynein and cargoes and enhances single-motor processivity. The dynactin subunit dynamitin (also known as p50) is believed to be integral to dynactin structure because free dynamitin displaces the dynein-binding p150(Glued) subu...

متن کامل

Regulation of cytoplasmic dynein function in vivo by the Drosophila Glued complex

The Drosophila Glued gene product shares sequence homology with the p150 component of vertebrate dynactin. Dynactin is a multiprotein complex that stimulates cytoplasmic dynein-mediated vesicle motility in vitro. In this report, we present biochemical, cytological, and genetic evidence that demonstrates a functional similarity between the Drosophila Glued complex and vertebrate dynactin. We sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 290 39  شماره 

صفحات  -

تاریخ انتشار 2015